Polymorph exploration of bismuth stannate using first-principles phonon mode mapping
نویسندگان
چکیده
منابع مشابه
First Principles Investigation of Ferromagnetism and Ferroelectricity in Bismuth Manganite
We present results of local spin density approximation (LSDA) pseudopotential calculations for the perovskite structure oxide, bismuth manganite (BiMnO3). The origin of the differences between bismuth manganite and other perovskite manganites is determined by first calculating total energies and band structures of the high symmetry cubic phase, then sequentially lowering the magnetic and struct...
متن کاملCoherent phonon excitation in bismuth
Ultrafast time-resolved reflectivity of a bismuth thin film evaporated on a silicon substrate is measured to investigate coherent phonons in bismuth. The reflectivity result is analyzed by a linear chirp approximation to obtain the time dependent frequencies of coherent phonons. Not only the optical modes are detected, which are generated by a combination of impulsive stimulated Raman scatterin...
متن کاملFirst-principles study of phonon linewidths in noble metals
Phonon lifetimes in Cu, Ag, and Au at low and high temperatures were calculated along high symmetry directions using density functional theory combined with second-order perturbation theory. Both harmonic and third-order anharmonic force constants were computed using a supercell small displacement method, and the two-phonon densities of states were calculated for all three-phonon processes cons...
متن کاملCO2 phonon mode renormalization using phonon-assisted energy up-conversion
Molecular dissociation under incident light whose energy is lower than the bond dissociation energy has been achieved through multi step excitation using a coupled state of a photon, electron, and multimode-coherent phonon as known as the dressed photon phonon (DPP). Here, we have investigated the effects of the DPP on CO2, a very stable molecule with high absorption and dissociation energies, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemical Science
سال: 2020
ISSN: 2041-6520,2041-6539
DOI: 10.1039/d0sc02995e